
[Kulkarni, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

[636]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
SOLUTION FOR RUBIK’S CUBE BY USING GENETIC ALGORITHM

Kulkarni Sameer Anil
M.Tech student Dept. of ISE BMS College of Engineering Bengaluru-India

ABSTRACT
Solutions calculated by Genetic Algorithms have come to surpass exact methods for solving various problems. The

Rubik’s Cube optimization problem is one such area. In this work we present a different approach to solve the Rubik’s

Cube with a low

Number of moves by building upon the genetic algorithm approach. We provide a group theoretic analysis of the sub

problem complexity induced by genetic algorithm approach, transitions and design a Genetic Algorithm from the

ground up including detailed derivation of our custom Fitness functions. By using this genetic algorithm approach we

can find optimized solution any problem, especially for NP-Hard problem we need to find a robust and optimized
solution, Rubik’s Cube is also one of the such type of problem, Hence in this paper our focus is to carry various

experiment by using Rubik’s Cube and to find the number of minimum moves in which we can solve this problem,

The experiments will carry by using Rubik’s Cube physically or by simulation, After getting Optimized solution paper

will talk about results and conclusion that whether we got an optimized solution for this problem or not.

KEYWORDS: Basic Term Genetic Algorithm (GA).

INTRODUCTION
Rubik’s Cube is the puzzle developed by the

professor
Erno Rubik, Standard version consists of 3*3*3 cube
with having different color stickers on exposed sub
cubes any 3*3*1 plane can be twisted or rotated in
90,180,270 degrees related to rest of the cube, and our
goal is to have all the squares on the each side are of
the same color.

A corner cube shows 3 facelets, an edge 2 and a center
1. Each side of the
Cube can be rotated clockwise (CW) and
counterclockwise (CCW). Each single move changes
the position of 4 edges and 4 corners. The center
facelets remain fixed in position. They determined
their face’s color. For each edge and corner we
distinguish between position and orientation: i.e. an
edge can be in its right position (defined by the two
adjacent center colors) but in the wrong orientation
(flipped). There are several known notations for
applying single moves on the Rubik’s Cube. We will
use F, R, U, B, L, D to denote a clockwise quarter-turn
of the front, Right, up, back, left, down face and Fi,
Ri, Ui, Bi, Li, Di for a counterclockwise Quarter-turn.
Every such turn is a single move. In Cube related
research, half turns (F2, R2, U2, B2, L2, and D2) are
also counted as single moves. This notation is
independent of colors but depends on the viewpoint.
A sequence of moves, an Operation is created by
concatenating single moves and is called operation

(i.e. FRBiL2).

A corner cube shows 3 facelets, an edge 2 and a center
1. Each side of the Cube can be rotated clockwise
(CW) and counterclockwise (CCW). Each single
move changes the position of 4 edges and 4 corners.
The center facelets remain fixed in position. They
determined their face’s color. For each edge and
corner we distinguish between position and
orientation: i.e. an edge can be in its right position
(defined by the two adjacent center colors) but in the
wrong orientation (flipped). There are several known
notations for applying single moves on the Rubik’s
Cube. We will use F, R, U, B, L, D to denote a
clockwise quarter-turn of the front, Right, up, back,
left, down face and Fi, Ri, Ui, Bi, Li, Di for a
counterclockwise Quarter-turn. Every such turn is a
single move. In Cube related research, half turns (F2,

http://www.ijesrt.com/

[Kulkarni, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

[637]

R2, U2, B2, L2, D2) are also counted as single moves.
This notation is independent of colors but depends on
the viewpoint. A sequence of moves, an Operation is
created by concatenating single moves and is called
operation (i.e. FRBiL2)[1].

GENETIC ALGORITHM
Puzzle can be scrambled by making random number

of twists and to solve this puzzle there are various

algorithm available, focus of this paper is to solve this

puzzle within a polynomial time with the help of

Genetic Algorithm. Genetic Algorithm finds the good

and robust solution for any problem including NP-

Hard problems. We can solve classical problem of

Algorithm like Travelling Salesman problem that is

Minimum Spanning tree problem, Knapsack problem.

We will solve the Rubik’s Cube by using genetic
algorithm. Genetic algorithm used to find the optimal
solution for the problem[2]. Genetic algorithm works
on the principle of Darwin’s theory:
1) Survival of the fittest selection is the population
improvement or the survival of the fittest that is
Structures with the highest finesses deletes the
Structures with the lower finesses.

2) Crossovers results in good component with the
good structures combining to reproduce even better
structures than them that is crossovers recombine the
different chromosomes from different genomes.
3) Mutation which creates new structures those are
similar to current structure.

How to make decision based on genetic algorithm?
We will see with the help of pseudo code & flow
chart

PSEUDO CODE:

Algorithm for GA is

// start with an initial

time t := 0;

// initialize a usually random population of

individuals

Initial population f (t);

// evaluate fitness of all initial individuals of

population

Evaluate f (t);

// test for termination criterion (time, fitness, etc.)

While not done do

// increase the time counter

t: = t + 1;

// select a sub-population for offspring production

f'(t):= select parents f (t);

//recombine the "genes" of selected

parents Recombine f' (t);

// perturb the mated population

stochastically Mutate f' (t);

// evaluate its new

fitness Evaluate f'

(t);

// select the survivors from actual

fitness f(t) := survive f(t),f' (t);

End GA.

RELATED WORK
To get more knowledge about genetic algorithm, I
referred various papers [1][2], which talks about the
solution of “0-1 knapsack problem” and “n-Queens
problem”, The complexity of Dynamic approach is of

the order of 0(n3) whereas the Greedy Method doesn't
always converge to an optimum solution, so the
solution for this problem is GA[1]. Genetic algorithm

is applicable to wide range problems like an n-queens
problem [2] also. In the absence of specialized
solution for a particular problem, genetic algorithm
would be efficient.

There are several computational approaches for
solving the Rubik’s Cube, the three most important
being the work of Thistlethwaite, Kociemba and
Rokicki Their advanced algorithms are based on group
theory concepts and apply advanced concepts such as
symmetry cancelation and dedicated traversal
methods (E.g. Iterative Deep Searching, IDA).
Thistlethwaite’s Algorithm (TWA) works by dividing
the problem into 4 sub problems - specifically
subgroups and subsequently solving those. By using
precalculated lookup-tables, sequences are put
together that move a Cube from one group into another
until it is solved.
Kociemba’s Algorithm takes the idea of dividing the

problem into subgroups from Thistlethwaite, but

reduces the number of needed subgroups to only 2[1].

This method uses an advanced implementation of

IDA, generating small maps, calculating and

removing symmetries from the search tree and tends

to solve the Cube close to the shortest number of

moves possible. Kociemba made his approach

available in form of a program called Cube Explorer

http://www.ijesrt.com/

[Kulkarni, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

[638]

which can be found at. Rokicki realized that the initial

parts of the pathways computed by Kociemba’s

Algorithm are solutions to a large set of related

configurations. He exploits this property by dividing

the problem into 2 billion cosets, each containing

around 20 billion related configurations. With this

method he was able to push the upper bound to 200

moves sufficing to solve the Cube from any initial

scrambled configuration[3].

PROPOSED SYSTEM:
The basic idea of the GA is to divide the problem of
solving the Cube into four independent sub problems
by using the following four nested groups:
G0=<F,R,U,B,L,D>,G1=<F,U,B,D,R2,L2>,
G2=<U,D,R2,L2,F2,B2>,G3=<F2,R2,U2,B2,L2,D2>

,G4=I. Obviously, G0 = GC. The functional principle

of Thistlethwaite’s Algorithm is to put the Cube into a

state where it can be solved by only using moves from

Gi which again has to be achieved by only using

moves from Gi−1 for i = 1, . . . 4, thus named nested

groups.

Specifically, every stage of the algorithm is simply a
lookup table showing a transition sequence for each
element in the current coset space Gi+1\ Gi to the next
one (i = i+1). These coset spaces, each describing a
reduced form of the 33

Rubik’s Cube puzzle, induce different kinds of
constraints. This directly results in the total number of
attainable states being reduced by using only moves
from some subgroup Gi+1. The exact orders for each
group are calculated as follows:

G0
|G0| = 4.33* 10^19 represents the order of the Cube
Group.

G1
The first coset space G1\G0 contains all Cube states,
where the edge orientation does not matter. This is due
to the impossibility of flipping edge cubies when only
using moves from G1. As there are 2^11 possible edge
orientations,
|G1\G0|=2^11=2048…… (1)

The order of |G1| is
|G1|≡|G0|÷|G1\G0|=2.11*10^16……..
(2)

G2
Using only moves from G2, no corner orientations

can be altered (eliminating 37 states). Additionally,

no edge cubies can be transported to or from the

middle layer (eliminating 12! (8! ·4!) States). The

coset space G2\G1 thus depicts a reduced puzzle of

the order |G2\G1|=3^7*(12! ÷ (8! \4!))=1082565…

(3)

And
|G2|≡|G1|÷|G2\G1|=1.95*10^10 ………. (4)

G3
Once in the coset space G3_G2, the Cube can be
solved by only using moves from G3, here the edge
cubies in the L,R layers cannot transfer to another
layer (eliminating (8÷(4!·4!)) * 2 states) and corners
are put into their correct orbits, eliminating (8! ÷ (4!
·4!)) * 3 states).

Thus,

|G3\G2|= ((8! ÷ (4!*4!))^2)*2*3=29400………. (5)

And
|G3|≡|G2|÷|G3\G2|=6.63*10^5……… (6)

G4
As G4 represents the solved state - obviously |G4| = 1

which means there exist a mere |G3| possible states for

which a solution needs to be calculated to transfer

from G4_G3 to solved state. Most essential to TWA

are the groups G1, G2, G3 as G0 simply describing the

Cube Group GC and G4 the solved state. To further

exemplify how the coset spaces simplify the Rubik’s

Cube puzzle the following may prove helpful. When
looking at the constraints induced by G2\G1\G0
carefully (combining the constraints induced by
G2\G1 and G1\G2) it is essentially a Rubik’s Cube
with only 3 colors - counting two opposing colors as
one. This representation can be reached for each
distinct coset space by examining and applying its
effect to the complete Rubik’s Cube puzzle.

While solving the Rubik’s Cube in a divide and
conquer manner, breaking it down into smaller
problems (by generating groups and coset spaces) is
effective, there exists one major flaw. Final results
obtained by concatenating shortest subgroup solution
do not necessarily lead to the shortest solution,
globally.

http://www.ijesrt.com/

[Kulkarni, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

[639]

Basic Work-Flow of Genetic Algorithm for this
Puzzle:

 Initialization

 Mutation phase

 “i”

 Fitness

Selection Calculation

Pool phase “i”

 Selection

Phase

Solved Cube

Transition

FITNESS FUNCTION
Translation phase which contains, the translation of
our algorithm in to an appropriate fitness function is
mandatory, Survival the fittest so the functions having
large running time should be discarded[1].

Step1:
Phase 0 → Phase 1
to reach phase 1 from any scrambled Cube, we have
to orient all edge pieces right while ignoring their

position. The fitness function for this phase simply
increases the variable phase0 by 2 for each wrong
oriented edge. Furthermore, we add the number of
moves that have already been applied to the particular

individual in order to promote shorter solutions.
Finally, we adjust the weight between w (number of
wrong oriented edges) and c (number of moves

applied to current Cube individual). This will be done
similarly in all subsequent phases.

phase0 = 5*(2w) + c………………. (7)

With a total of 12 edges which can all have the wrong
orientation this gives max {2w} = 24. The Cube has
been successfully put into Phase1 when phase0 = c.

Reaching Phase1 is fairly easy to accomplish, thus

making the weight-factor 5 a good choice.

Step2:
Phase1 → Phase2 In order to fulfill Phase 2 the 8

corners have to be oriented correctly. Edges that
belong in the middle layer get transferred there. Tests

with the Classical solution showed it somewhat
problematic to do this in one step. Oftentimes, the

algorithm would get stuck in local optima. To solve
this, the process of transferring a Cube from Phase1 to

Phase2 has been divided into two parts. First, edges
that belong into the middle layer are transferred there.

Second, the corners are oriented the right way. The

first part is fairly easy and the fitness function is
similar to that from phase0 except for w (number of

wrong positioned edges), i.e. edges that should be in
the middle layer but are not.

phase1 = 5* (2w) + c………………….. (8)

In the second part, for each wrong positioned corner,
4 penalty points are assigned as they are more complex
to correct than edges. Obviously, in order to put the
Cube from G1 to G2 both phases described here have
to be fulfilled, which yields:

phase2 = 10 * (4v) + phase1 ……………….(9)

Where v represents the number of wrong oriented
corners. The weighing factor is increased from 5 to 10
to promote a successful transformation into G2 over a
short sequence of moves.

Step3:
Phase2 → Phase3 We now have to put the remaining
8 edges in their correct orbit. The same is done for the
8 corners which also need to be aligned the right way.
Thus, the colors of two adjacent corners in one circuit
have to match on two faces. In G3 the Cube will only
have opposite colors on each face. Let x (number of
wrong colored facelets) and y (number of wrong
aligned corners), then

phase3 = 5* (x + 2 *y) + c………………….. (10)

Step4:
Phase3 → Phase4 (solved) The Cube can now be
solved by only using half-turns. For the fitness
function we simply count wrong colored facelets. Let
z be the number of wrong colored facelets, then

phase4 = 5・ z + c………………………….. (11)

To summarize, 5 different fitness functions are needed
for the Genetic algorithm. Phase i is solved if phase i
= c, i = 0, ..., 4 and with the properties of nested groups
we can conclude, given the above, a solved Cube

http://www.ijesrt.com/

[Kulkarni, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

[640]

implies:
4
Σ phase i =
c i=0
Fulfilling the above equation satisfies the constraints
induced by the groups G0,….G4, with the final fitness
value c describing the final solution sequence length.
The weight factors chosen are based on consecutive
testing throughout development. The ratio is dictated
by the size of the nested groups.

Finding optimal weights presents a separate
optimization problem and may be subject to future
work.

MUTATION OPERATORS
The mutation operators are dictated by the subgroups
used[2]. Conveniently, the maximum sequence length
(s) needed to transform the Cube from one subgroup
to another is given by Thistlethwaite [13]. Those
lengths are 7,13,15,17 (the sum of which is 52,
hence”52 Move Strategy”) for each group transition
respectively. An individual in phase i is mutated by:
1. Generating a random length (l) with 0 ≤ l ≤ s,
according to i (i = 0 → s = 7, i = 1 → s = 13, i = 2, 3
→ s = 15, i = 4 → s = 17)
2. Concatenating l random single moves from the
according group Gi
3. Applying this sequence to the current Cube
individual

For example: Let i = 2 (transitioning from G2 → G3).
The maximum sequence length for this step is s = 15.
Let random l = 4, (0 ≤ 4 ≤ 15). Next, we chose a

random single move from G2, repeat this a total of 4
times and concatenate these to form a sequence. Let
those 4 single moves be D, F2, and R2, U. This results
in the sequence D,F2,R2,U representing the present

mutation which is applied to the current Cube
individual. In case of l = 0 the mutation is an empty
sequence, leaving the current individual untouched.

Given an appropriate fitness, this allows distinct
Cubes to survive multiple generations.

OBSERVATIONS
Observations are observed by using simulator named
“Arcus”. With the help of this software we can
simulate the Rubik’s cube,

1) Initial Position:

2) Final Solution by Classical
Algorithm: Number of moves: 221
As the numbers of moves are higher so the running
time for the solution is high.

3) Final solution by Genetic
Algorithm: Number of moves: 107
As the numbers of moves are higher so the running
time for the solution is lower as compared to
classical solution.

http://www.ijesrt.com/

[Kulkarni, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

[641]

CONCLUSION
It can be concluded that, genetic algorithm can provide

optimal solution for the Rubik’s cube problem, as we

have observed in above simulation results; the

classical solution takes 227 moves to solve this cube,

while by applying the genetic algorithm theory we can

get the optimal solution in 107 moves, so this paper

concludes that the genetic algorithm provides the

efficient solution for this problem.

REFERENCES
[1] Modified Genetic Algorithm for Solving n-

Queens Problem Jalal eddin Aghazadeh
heris, Mohammadreza Asgari
Oskoei,Intelligent Systems (ICIS), 2014.

[2] A task scheduling algorithm based on genetic

algorithm
and ant colony optimization in cloud
computing, Chun-Yan LIU Pei WU, 2014
13th International Symposium on Distributed
Computing and Applications to Business,
Engineering and Science

[3] The Enhanced Genetic Algorithms for the

Optimization Design Pengfei Guo
XuezhiWang Yingshi Han, 2010 3rd
International Conference on Biomedical
Engineering and Informatics (BMEI 2010)

[4] Test Data Generation Using Annealing

Immune Genetic
Algorithm, X. B. Tan, Cheng Longxin, Xu Xiumei, 2009 Fifth International Joint Conference on INC, IMS
and IDC.

http://www.ijesrt.com/

